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Abstract

Background: Variations in an individual’s electronic health (eHealth) literacy may influence the degree to which health
consumers can benefit from eHealth. The eHealth Literacy Scale (eHEALS) is a common measure of eHealth literacy. However,
the lack of guidelines for the standardized interpretation of eHEALS scores limits its research and clinical utility. Cut points are
often arbitrarily applied at the eHEALS item or global level, which assumes a dichotomy of high and low eHealth literacy. This
approach disregards scale constructs and results in inaccurate and inconsistent conclusions. Cluster analysis is an exploratory
technique, which can be used to overcome these issues, by identifying classes of patients reporting similar eHealth literacy without
imposing data cut points.

Objective: The aim of this cross-sectional study was to identify classes of patients reporting similar eHealth literacy and assess
characteristics associated with class membership.

Methods: Medical imaging outpatients were recruited consecutively in the waiting room of one major public hospital in New
South Wales, Australia. Participants completed a self-report questionnaire assessing their sociodemographic characteristics and
eHealth literacy, using the eHEALS. Latent class analysis was used to explore eHealth literacy clusters identified by a distance-based
cluster analysis, and to identify characteristics associated with class membership.

Results: Of the 268 eligible and consenting participants, 256 (95.5%) completed the eHEALS. Consistent with distance-based
findings, 4 latent classes were identified, which were labeled as low (21.1%, 54/256), moderate (26.2%, 67/256), high (32.8%,
84/256), and very high (19.9%, 51/256) eHealth literacy. Compared with the low class, participants who preferred to receive a
lot of health information reported significantly higher odds of moderate eHealth literacy (odds ratio 16.67, 95% CI 1.67-100.00;
P=.02), and those who used the internet at least daily reported significantly higher odds of high eHealth literacy (odds ratio 4.76,
95% CI 1.59-14.29; P=.007).

Conclusions: The identification of multiple classes of eHealth literacy, using both distance-based and latent class analyses,
highlights the limitations of using the eHEALS global score as a dichotomous measurement tool. The findings suggest that eHealth
literacy support needs vary in this population. The identification of low and moderate eHealth literacy classes indicate that the
design of eHealth resources should be tailored to patients’ varying levels of eHealth literacy. eHealth literacy improvement
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interventions are needed, and these should be targeted based on individuals’ internet use frequency and health information amount
preferences.

(J Med Internet Res 2019;21(8):e13423)  doi: 10.2196/13423
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Introduction

Electronic Health Literacy Is Important for the Use
and Receipt of Benefits From Electronic Health
Programs
Web-based interventions have been reported to be consistently
more effective than non-Web-based modalities in changing
patient health behaviors and health-related knowledge [1].
Information and communication technology is also recognized
as a promising enabler of safe, integrated, and high-quality
health care, yet more scientifically rigorous research is needed
[2,3]. Accordingly, internet-enabled health care is a strategic
priority globally [4-7]. Electronic health (eHealth) literacy is
one important factor influencing the use and receipt of benefits
from Web-based health resources [8-10]. eHealth literacy refers
to an individual’s ability to seek, find, understand, and appraise
health information from electronic sources, and apply the
knowledge gained to addressing or solving a health problem
[11]. The concept is derived from 6 literacy types (ie, health,
computer, media, science, information, traditional literacy, and
numeracy), which play an important role in facilitating
engagement with Web-based health resources [11]. Inadequate
eHealth literacy has been self-reported as a barrier to use of the
internet for health information seeking purposes among the
chronically ill [12]. Furthermore, descriptive research indicates
that eHealth literacy is associated with positive cognitive (eg,
understanding of health status) [8], instrumental (eg,
self-management, physical exercise, and dieting) [8-10], and
interpersonal (eg, physician interaction) [8] outcomes from
Web-based health information searches. Individuals with lower
eHealth literacy have been suggested to be older [8,13,14], less
educated [8,14,15], have lower access to, or use of, the internet
[15-17], and have poorer health [8].

Interpretations of Electronic Health Literacy Data are
Inconsistent
Approaches used to assess eHealth literacy have included
objective performance testing [18,19] and self-reported
measurement [20-23]. The most commonly used self-reported
measure is the 8-item, eHealth Literacy Scale (eHEALS) [20].
Compared with other self-report measures of eHealth literacy,
strengths of the eHEALS include its psychometric rigor, brevity,
ease of administration, and availability in a number of languages
[17,19,20,24-26]. One of the key issues limiting the utility of
the eHEALS is the lack of information about interpretation of
these data. Although there is a convention that higher scores
represent a higher level of eHealth literacy [20], there is an
absence of guidance for the standardized interpretation of these
scores. This guidance is needed to inform decision-making and
follow-up actions [27]. eHEALS mean and median scores

[8,13,14,28], as well as item response frequencies [14,29,30],
are typically reported. Cut points have been arbitrarily applied
at the item level [15], which disregards scale constructs.
Furthermore, the common use of a single cut point to the global
scale [8,16,28] implies a dichotomy of high versus low eHealth
literacy and does not account for respondent self-perceived
competency across the multiple eHEALS factors (ie, awareness,
skills, and evaluation) [24,31]. These factors have only recently
been identified [24,31], demonstrating that our understanding
of the eHEALS and its psychometric properties is continuing
to evolve more than a decade after the scale was published.

A Robust Approach to Analyzing Electronic Health
Literacy Data Is Required
Shortcomings in the interpretation of eHEALS scores highlight
the need for a robust approach to analyzing and interpreting
eHealth literacy data. In line with the principles of scale
development [27,32], measures should be refined as new data
about a scale’s properties accumulates. This includes retesting
a scale when it is used in new populations and as new analytical
techniques become available [27,32]. Cluster analysis is a
sophisticated analytical approach, which has not previously
been applied to eHealth literacy research. This powerful
technique is used to identify natural groupings or structures
within data and can therefore classify individuals who score
similarly on an outcome measure, such as the eHEALS [33]. It
has several strengths including: First, it is a data-driven
exploratory technique and therefore not dependent on scoring
thresholds, which are arbitrarily imposed by the author(s).
Second, being able to observe and characterize natural structures
or groupings means that researchers have a better understanding
of subgroups of eHealth literacy in the sample population. If
classes (or clusters) exist, ignoring their presence by analyzing
the data as a single group could lead to an averaging out of any
effects of interest [34]. Third, this approach allows for the
multiple eHEALS domains (ie, skill, awareness, and evaluate)
to be considered simultaneously across subgroups. For example,
it can be known if one subgroup self-rates their awareness as
highest, whereas another subgroup self-rates their skills as
highest. Finally, regression analyses can be completed to
examine patient characteristics associated with assignment to
each eHealth literacy class.

By understanding the number and characteristics of groupings,
it can be known whether a one size fits all approach to eHealth
literacy improvement is appropriate, or whether more tailored
interventions are required. If tailoring is needed, understanding
how different classes scored across the eHEALS factors allows
researchers and clinicians to ensure interventions are designed
to specifically address the needs of that subgroup. Furthermore,
understanding patient characteristics associated with class
membership allows the identification of individuals who should
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be targeted for interventions, or who will require more intensive
support throughout periods of eHealth delivery. A cluster
analysis of eHEALS data is therefore an important next step to
better understand the multicomponent nature of eHealth literacy
and how these eHEALS factors coexist in subgroups of patients.

This study aimed to determine (1) whether there are identifiable
eHealth literacy classes among magnetic resonance imaging
(MRI) and computed tomography (CT) medical imaging
outpatients; and (2) sociodemographic and internet use
characteristics associated with each eHealth literacy class.

Methods

Design and Setting
This cross-sectional study was completed with MRI and CT
medical imaging outpatients attending the imaging department
of a large, tertiary hospital, located within New South Wales,
Australia. The results of this study have been reported in
accordance with the Strengthening the Reporting of
Observational Studies in Epidemiology checklist [35] and the
Checklist for Reporting Results of Internet E-Surveys [36].

Participants
Eligible participants were: (1) attending for an outpatient MRI
or CT scan; (2) 18 years or older; and (3) reported having access
to the internet for personal use. Participants were excluded if
they were: (1) non-English speaking; (2) deemed by reception
staff to be cognitively or physically unable to consent or
complete the survey; or (3) identified as having completed the
survey previously. MRI and CT medical imaging outpatients
were the focus of this research because they have high unmet
information preferences, which could potentially be met by
eHealth capabilities [37].

Procedure
Medical imaging department receptionists identified potentially
eligible participants when they presented for their outpatient
appointment. Potentially eligible participants were informed
about the research and invited to speak with a trained research
assistant. Interested patients were provided with a written
information sheet and introduced to the research assistant, who
gave an overview of the study and obtained the patient’s verbal
consent to participate. During this overview, interested patients
were told that the Web-based questionnaire would take
approximately 10-15 mins to complete, participation was
voluntary, and responses would remain confidential. The age,
gender, and scan type of noninterested and nonconsenting
patients were recorded. Consenting patients were provided with
a tablet computer and asked to complete a Web-based
questionnaire before their scan. Participants’ study identification
number, assigned by the receptionist and entered by the research
assistant, provided access to the questionnaire. Each participant
could move freely through each screen using next and back
buttons. The questionnaire was pilot tested with MRI and CT
medical imaging outpatients 2 weeks before study
commencement, which confirmed the acceptability and
feasibility of electronic survey administration in this study
setting. A paper-and-pen version of the questionnaire was
available to participants who requested it. If the patient was

called for their procedure before finishing the questionnaire,
only those questions that had been completed were used for
data analysis. Electronic responses were deidentified, collected
using the QuON platform [38], and stored securely on an
access-restricted part of the University of Newcastle server.
Ethics approval was obtained from the Human Research Ethics
Committees of the Hunter New England Local Health District
(16/10/19/5.11) and University of Newcastle (H-2016-0386).

Measure
eHealth literacy was assessed using the 8-item eHEALS. All 8
eHEALS items were administered on 1 screen within the
Web-based questionnaire, and the presentation of these items
was not random. Respondents indicated their level of agreement
with each statement on a 5-point Likert scale from 1 strongly
disagree to 5 strongly agree. Responses were summed to give
a final score ranging from 8 to 40, with higher scores indicating
higher eHealth literacy. The tool has demonstrated test-retest
reliability [17], internal consistency [17,19,28], and
measurement invariance across English speaking countries [24].
Previous studies, largely employing exploratory factor analysis,
have suggested that the scale measures a single factor
[8,17,19,20]. Emerging research using confirmatory factor
analysis and based on the theoretical underpinnings of eHealth
literacy suggests that the scale measures 3 factors: awareness,
skills, and evaluate [24,31]. This 3-factor eHEALS structure
has been identified in the medical imaging study setting
(standardized root mean residual=0.038; confirmatory fit
index=0.944; and root mean square error of
approximation=0.156) [31]. As such, self-rated awareness, skills,
and evaluate competencies of patients within each subgroup
were explored within this study.

Study Factors
On the basis of previous research indicating an association with
eHealth literacy, standard self-report items assessed participant
gender, age, marital status, education, internet use frequency,
and overall health status [8,13-17]. Remoteness of residence,
health information amount preference (no information; some
information; and a lot of information), and internet use for scan
preparation (yes; no; and don’t know) were hypothesized to
influence eHealth literacy and were, therefore, included as
covariates. Participant postcodes were mapped to the
Accessibility/Remoteness Index of Australia Plus to categorize
participant remoteness as metropolitan (major cities of Australia)
or nonmetropolitan (inner regional, outer regional, remote, or
very remote Australia) [39].

Data Analysis
Participant characteristics were summarized as frequencies and
percentages or means and standard deviations. Consent bias
was assessed for gender, scan type, and age group using
Chi-square tests. Given the high completion rate (98.1%,
256/261 for individuals starting eHEALS items), only complete
eHEALS data were included in the analyses. Items relating to
each eHEALS factor were summed to generate separate
awareness, skill, and evaluate factor scores.
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Identification of Electronic Health Literacy Classes
Cluster analysis was completed using a 2-phased approach.
Distance-based unsupervised clustering was undertaken as an
initial exploratory knowledge discovery technique, to identify
natural clusters of patients according to their responses (refer
Multimedia Appendix 1 for methods and results). Secondary
clustering of patients, using latent class analysis (LCA) as a
statistical modeling approach, was to be completed as a
follow-up if distance-based cluster structures were observed.
LCA was subsequently performed to verify the 4-cluster
structure identified. LCA is less sensitive to choice of parameters
(eg, distance metric), allows for uncertainty in class membership,
and has greater power and lower type 1 error rates when
compared with other clustering techniques [34], and was,
therefore, selected as the primary analysis technique. Latent
class membership probabilities were calculated to determine
the proportion of the sample that belonged to each of the classes.
Item response probabilities were calculated to determine the
probability of endorsing each response option, conditional on
class membership. The Bayesian Information Criterion (BIC)

and G2-statistic were computed to aid in determining the optimal
number of classes (with plateauing indicating no improvements
to model fit) [40], as were overall class interpretability and
model parsimony. Model entropy was computed, with values
closer to 1 representing clear class delineation [41]. The
maximum posterior probability of class membership was also
calculated for each participant, based on the optimal number of
classes, with values greater than .5 indicating adequate
probability for class assignment [42].

Characteristics Associated With Class Membership
An LCA regression analysis was performed to identify
participant sociodemographic and internet use characteristics
associated with class membership. Given the exploratory nature
of data analysis, all covariates were initially cross-tabulated
with class membership (assigned according to maximum

posterior probability) to identify model sparseness, and then
analyzed using univariate LCA regression: gender; age (<65
years vs 65+ years); geographic location of residence (major
city vs regional or rural); marital status (married or living with
partner vs not married); education (high school or less vs more
than high school); overall health (fair or worse; good or better
than good); information amount preference (a lot of information
vs not a lot of information); internet use for scan preparation;
and internet use frequency (daily vs less than daily). Likelihood
ratio tests (based on the univariate results) were performed to
determine whether each predictor significantly improved the fit
of the model. Covariates with a statistically significant likelihood
ratio test (P<.05) were included in the final multivariable LCA
regression. Distance-based and latent class analyses were
performed in R 3.4 [43]. Descriptive statistics were computed
in STATA v13.

Sample Size
Sample sizes of at least 200 have been suggested as adequate
for LCA, dependent on subsequent model fit and number of
classes [40,44]. As such, a sample of at least 200 was deemed
appropriate for this study.

Results

Sample
A total of 405 potentially eligible patients were invited to discuss
the study with a research assistant during the 7-week recruitment
period, of which 354 (87.4%) were interested in participating.
Of 268 eligible participants, 261 (97.4%) started the eHEALS,
256 (95.5%) completed all eHEALS items, and 222 (82.8%)
completed all eHEALS and study factor items. There were no
significant differences between patients who were and were not
interested in participating in the study based on gender, scan
type, or age group. Table 1 provides a summary of the
sociodemographic, scan, and internet characteristics of the study
sample.
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Table 1. Participant sociodemographic, scan, and internet characteristics (N=256). Number of observations for each characteristic may not total 256
because of missing data.

ValueCharacteristic

53 (15.0)Age (years), mean (SD)

Electronic Health Scale (eHEALS) domain score, mean (SD)

6.9 (2.0)Awareness (possible total=10)

10.9 (2.9)Skills (possible total=15)

10.0 (3.1)Evaluate (possible total=15)

Gender, n (%)

112 (43.8)Male

144 (56.3)Female

Marital status, n (%)

146 (64.6)Married or living with partner

80 (35.4)Not married or living with partner

Education completed, n (%)

128 (56.6)High school or less

98 (43.4)More than high school

Geographic location, n (%)

200 (78.1)Metropolitan

56 (21.9)Nonmetropolitan

Overall health, n (%)

17 (7.7)Poor

75 (34.1)Fair

94 (42.7)Good

34 (15.5)Very good

Scan type, n (%)

101 (39.4)Computed tomography

152 (59.4)Magnetic resonance imaging

3 (1.2)Don’t know

Used internet for scan, n (%)

27 (10.5)Yes

228 (89.1)No

1 (0.4)Don’t know

Frequency of internet use, n (%)

11 (4.3)Less than once a month

5 (1.9)Once a month

14 (5.5)A few times a month

33 (12.9)A few times a week

47 (18.4)About once a day

146 (57.0)Several times a day

Information amount preference, n (%)

2 (0.8)No information

58 (25.9)Some information

165 (73.3)A lot of information
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Identification of Electronic Health Literacy Classes

The BIC and G2-statistic continued to decrease as the number
of classes (K) increased, but the improvement was progressively
smaller after 3 classes (see Table 2). On the basis of the
interpretability of the latent classes, the reduction in class size
beyond K=4, and parsimony, the 4 class model was selected as
the optimal class structure. The lowest maximum posterior
probability under this 4 class model was .516. As such, all
participants exceeded the threshold of .5 for maximum posterior
probability and were assigned to a class. Hence, LCA findings
on number of classes were consistent with that of distance-based
clustering (see Multimedia Appendix 1).

Multimedia Appendix 2 shows the unconditional item response
probabilities of each eHEALS response option based on class
assignment. Classes were named according to likely level of
eHealth literacy, with respect to that of other classes identified
in the analysis:

• Class 1—low eHealth literacy (21.1% of respondents,
54/256): when compared with other classes, class 1 had the
highest probability of responding disagree and strongly
disagree across all eHEALS items. The probability of this
group responding either disagree or strongly disagree was
highest for awareness items (0.88 and 0.89), followed by
evaluate items (0.79, 0.81, and 0.88) and skills items (0.66,
0.75, and 0.84).

• Class 2—moderate eHealth literacy (26.2% of respondents,
67/256): when compared with other classes, class 2 had the
highest probability of responding undecided across all
eHEALS items, and the second highest probability of
responding agree across awareness and skills items. This
group was most likely to respond undecided to awareness
items (0.56 and 0.59), either agree (0.54 and 0.58) or
undecided (0.48) to skills items, and undecided to evaluate
items (0.55, 0.61, and 0.63).

• Class 3—high eHealth literacy (32.8% of respondents,
84/256): when compared with other classes, class 3 had the
highest probability of responding agree across all eHEALS
items. The probability of this class responding agree was

greatest for skills items (0.97, 0.97, and 1.00), followed by
awareness (0.80 and 0.91), and evaluate items (0.68, 0.71,
and 0.81).

• Class 4—very high eHealth literacy (19.9% of respondents,
51/256): when compared with other classes, class 4 had the
highest probability of responding strongly agree across all
eHEALS items. The probability of this class responding
strongly agree was greatest for skills items (0.71, 0.79 and
0.90), followed by evaluate (0.57, 0.74, and 0.86), and
awareness items (0.53 and 0.61).

Characteristics Associated With Class Membership
Internet use for scan preparation was not included in regression
analyses because of sparseness (ie, 10.5%, 27/256 of participants
responded yes to internet use for scan preparation). Following
univariate analyses, likelihood ratio difference tests indicated
that age; education, marital status, overall health status,
information amount preference, and internet use frequency all
significantly improved the fit of the model (P<.05; see
Multimedia Appendix 3) and were included in the multivariable
regression analysis (see Table 3).

Class 1 (low eHealth literacy) was selected as a reference class
for multivariable regression. This was because these participants
likely need additional support to engage with eHealth, making
identification of the characteristics of participants in this
subgroup a priority. As shown in Table 3, participants who
indicated that they preferred not to receive a lot of information
about their health had 0.06 times the odds of belonging to class
2 (moderate eHealth literacy), compared with class 1 (low
eHealth literacy), and this difference was statistically significant.
Furthermore, participants who reported using the internet less
than daily had 0.21 times the odds of belonging to class 3 (high
eHealth literacy), compared with class 1 (low eHealth literacy),
and this difference was statistically significant. There were no
other significant differences in sociodemographic or internet
use attributes between participants in class 1 (low eHealth
literacy) and classes 2, 3, and 4 (moderate, high, and very high
eHealth literacy, respectively).

Table 2. Goodness of fit indices for 1 to 5 class structures.

EntropyG2-statisticBICaClass structure

1.003402.835893.741 class structure

0.972474.765148.662 class structure

0.981794.794651.683 class structure

0.921516.934556.814 class structure

0.901322.344545.215 class structure

aBIC: Bayesian Information Criterion.
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Table 3. Adjusted odds ratios associated with membership of classes 2, 3, and 4, compared with class 1.

Class 1 versus class 4 (low vs
very high)

Class 1 versus class 3 (low vs
high)

Class 1 versus class 2 (low vs
moderate)

Variable

P valueOdds ratio (95% CI)P valueOdds ratio (95% CI)P valueOdds ratio (95% CI)

Age

RefRefRefRefRefRefa<65 years

.250.37 (0.07-2.00).060.32 (0.10-1.03).260.37 (0.06-2.11)65 years or older

Education

RefRefRefRefRefRefHigh school or less

.143.89 (0.67-22.76).292.21 (0.52-9.47).931.09 (0.15-7.65)More than high school

Marital status

RefRefRefRefRefRefMarried or living with partner

.920.91 (0.14-6.01).960.96 (0.27-3.41).601.63 (0.26-10.23)Not married or living with partner

Information amount preference

RefRefRefRefRefRefA lot of information

.100.23 (0.04-1.29).430.61 (0.18-2.04).02b0.06 (0.01-0.60)Not a lot of information

Overall health

RefRefRefRefRefRefFair or worse

.611.48 (0.33-6.68).811.16 (0.35-3.87).911.10 (0.24-5.02)Good or better than good

Internet use frequency

RefRefRefRefRefRefDaily

.140.17 (0.02-1.76).007b0.21 (0.07-0.63).520.62 (0.14-2.67)Less than once a day

aRef: reference category.
bStatistically significant.

Discussion

Principal Findings
This study was the first to identify classes of patients based on
eHealth literacy, and to assess characteristics associated with
class membership. The identification of multiple classes, using
both distance-based and latent class analyses, highlights issues
with using the eHEALS global score as a dichotomous
measurement tool. In particular, these findings suggest that it
may be important to account for multiple eHealth literacy
subgroups when developing standardized guidance for the
interpretation of eHEALS scores. Furthermore, the identification
of multiple classes suggests that the design and delivery of
eHealth resources may need to be tailored based on eHealth
literacy. Patient characteristics, such as internet use frequency
and health-related information amount preferences, may provide
an indication of eHealth literacy, and related support needs.

Multiple Electronic Health Literacy Subgroups Were
Identified
In total, 4 eHealth literacy classes were identified, and the
probabilities of belonging to each of the 4 classes were similar
(ie, range 19.9%-32.8%). The finding that eHealth literacy
varied substantially in this population suggests that MRI and
CT medical imaging outpatients may have differing support
needs relating to the use of eHealth technology. Subgroups of

patients were characterized by having either very high, high,
moderate, or low eHealth literacy. Within the very high eHealth
literacy subgroup, awareness was the lowest scoring
competency. This may be because consumers who are familiar
with eHealth also understand the masses of Web-based
information that is available and the common difficulty of
locating valid and reliable information sources [12]. Across all
classes, participants reported being most competent in their
skills using eHealth resources. Such skills may be perceived
highly because they align to the computer and media literacy
types, which comprise eHealth literacy [11]. These literacy
types are increasingly used in the digital era, with 87% of
Australians being identified as internet users in 2016-2017 [45].

In total, 2 out of 4 classes, comprising 52.7% of respondents,
had the highest probability of responding either agree or strongly
agree to eHEALS items, reflecting high and very high eHealth
literacy. Despite this, there was room for improvement in
awareness, skills, and evaluation competencies for the remaining
2 classes, comprising 47.3% of respondents and reflecting low
and moderate eHealth literacy. This approximately even split
in eHealth literacy capabilities is also apparent in other studies
completed with cardiovascular disease patients [16] and chronic
disease patients [46], which used arbitrary cut points to
dichotomize high versus low eHealth literacy. It is possible that
the application of dichotomous cut points prevented the
identification of such diverse eHealth literacy subgroups. Further
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research using cluster analyses should be conducted to determine
whether multiple eHealth literacy subgroups exist across other
health consumer populations. This information may inform the
development of more targeted eHealth literacy improvement
interventions.

Internet Use Frequency and Health Information
Amount Preferences Predicted Class Membership
Those who had used the internet less than daily had
approximately 5 times the odds of belonging to the low eHealth
literacy class compared with the high eHealth literacy class.
Although mixed findings exist [19], an association between
internet use and eHealth literacy has been reported in studies
with chronically ill patients and the general public [15-17]. Our
findings may suggest that frequent internet users do use the
internet for health, and this may result in greater self-reported
eHealth literacy. Alternatively, they may indicate that frequent
internet users self-perceive that their ability to engage with and
evaluate general internet resources is transferable to
health-related content.

Those with a preference not to receive a lot of information about
their health had over 16 times the odds of belonging to the low
eHealth literacy class, compared with the moderate eHealth
literacy class. To the authors’ knowledge, this study is the first
to explore the association between preferred amount of
information and eHealth literacy. It is possible that the inclusion
of an undecided response option resulted in imposter syndrome
for those in the moderate class [47]. In this case, participants
underestimate their competency, opting for a neutral response
option, to prevent being perceived as overconfident. Therefore,
those in the moderate class may be more eHealth literate than
findings suggest, which could contribute to a significant finding
when comparing low and moderate classes. It may also be
possible that those who prefer to receive a lot of information
about their health are Web-based health-related information
seekers, hence requiring eHealth literacy. An evidence review
completed by the Australian Commission on Quality and Safety
in Health Care found that patients typically use the internet as
a supplement to advice from a health professional [48]. It is
therefore likely that those who have greater preferences for
health-related information require and develop the awareness,
skills, and evaluation abilities needed to use this Web-based
supplementary information. An analysis of the potentially
moderating effects of Web-based health-related information
seeking on the association between information amount
preference and eHealth literacy should be explored in the future.
This analysis should include an examination of the types of
eHealth resources being accessed and used.

The technology acceptance model provides a theoretical
justification for the characteristics related to a subgroup
assignment [49]. Under this model, technology acceptance is
influenced by perceived ease of use, and usefulness of the
internet [49]. Accordingly, those who use the internet more
frequently may be more likely to perceive ease of use of
Web-based health resources. Similarly, those who prefer to
receive a lot of health-related information may be more likely
to deem eHealth as useful. Such perceived acceptability may
result in greater self-rated eHealth literacy. Continued studies

are needed to investigate this association and determine whether
other factors not explored in this study, which promote perceived
ease of use and usefulness of eHealth (eg, speed and availability
of the internet, and self-management of chronic conditions,
respectively), are associated with eHealth literacy. Contrary to
expectations and inconsistent with previous studies [8,13-15],
no other examined sociodemographic characteristics
significantly influenced class membership. Inconsistencies with
existing literature may indicate that the predictors of eHealth
literacy differ across populations, settings, or cut points applied.

Practice Implications
The identification of low and moderate eHealth literacy classes
suggests that eHealth literacy improvement interventions may
be warranted within this population. However, there is minimal
high-quality research investigating the effectiveness of such
interventions, highlighting a need for continued research in this
area [50]. Given their association with low class membership,
those who use the internet less than daily and prefer not to
receive a lot of health information should be the focus of such
eHealth literacy improvement interventions. In the interim,
researchers and clinicians should tailor the design and delivery
of eHealth resources to patients’ eHealth literacy, to maximize
engagement and potential receipt of benefits. As skills were the
highest rated competency across all classes within this study
population, future eHealth interventions should be designed
with a focus on promoting awareness and reducing the need to
evaluate eHealth resources within the imaging setting. A written
provider recommendation, which directs consumers toward
credible eHealth resources, may be one scalable strategy to do
this [31,51]. In cases where skills are low, alternative strategies
may be needed, such as clear instructions on how to
appropriately navigate Web-based content, reduced
click-through requirements to retrieve Web-based materials,
and the use of persuasive system design elements to enhance
usability and maintain engagement [52].

Limitations and Future Research
To aid in the interpretation of findings, labels (ie, very high,
high, moderate, and low) were arbitrarily assigned to eHealth
literacy classes. It is therefore unclear whether, for example,
those classified as very high eHealth literacy were indeed very
high. As this study applied a novel approach to data analysis
and interpretation, the generalizability of findings across medical
imaging settings and to other patient groups is unknown. This
class structure and the predictors of class membership should
be studied and replicated in other populations. Furthermore, it
is possible that the setting influenced responses as participants
may have assumed that eHEALS questions related to
scan-specific information on the internet rather than general
eHealth resources.

The eHEALS was selected because of its established
psychometric properties, emerging research proposing a 3-factor
structure, and wide application [17,19,20,24,28,31]. However,
it has been criticized for not measuring health 2.0. (ie,
user-generated content and interactivity) and, therefore, lacking
relevance to modern technology [21,24,53]. Some studies have
adapted the scale to address this limitation, yet the body of
research is small and as a result, the impacts on scale
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psychometric properties remain unclear [21,24]. The generation
of new Web-based content is, however, not highly relevant
within the context of preparatory information provision for
medical imaging procedures and this limitation is, therefore,
not expected to influence our study.

Conclusions
This study used sophisticated analytical techniques to add to
evidence about the nature of eHEALS scores within a clinical
population. Cluster analyses were used to identify 4 classes of
patients with differing eHealth literacy within this sample of
MRI and CT medical imaging outpatients. The proportion of
participants assigned to each latent class was similar, suggesting

that eHealth literacy varies within this study setting. Across all
classes, skills were perceived as the highest rated competency
followed by either awareness or evaluation. The frequency of
participants’ personal internet use and their health-related
information preferences predicted class membership. Tools such
as the eHEALS may need to be administered to identify class
assignment, and inform eHealth literacy improvement
interventions, as well as the design and delivery of eHealth
resources. Findings from this study should also contribute to
the development of guidance for eHEALS scoring interpretation,
which is a necessary next step to improve scale utility [27].
Study findings should be replicated in other populations and
settings to increase the generalizability of results.
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